Impact origin of sediments at the Opportunity landing site on Mars (2024)

References

  1. Squyres, S. W. et al. The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars. Science 306, 1698–1703 (2004)

    Article ADS CAS Google Scholar

  2. Squyres, S. W. et al. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306, 1709–1714 (2004)

    Article ADS CAS Google Scholar

  3. Christensen, P. R. et al. Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover. Science 306, 1733–1739 (2004)

    Article ADS CAS Google Scholar

  4. Kerr, R. A. On Mars, a second chance for life. Science 306, 2010–2012 (2004)

    Article Google Scholar

  5. Carlson, R. H. & Roberts, W. A. Ejecta Studies, Project Sedan (PNE-217P, University of California Lawrence Radiation Laboratory, Livermore, California, 1962)

    Google Scholar

  6. Glasstone, S. & Dolan, P. J. The Effects of Nuclear Weapons 3rd edn (US Department of Defense and Energy Research and Development Administration, Washington DC, 1977)

    Google Scholar

  7. Wohletz, K. H. in Developments in Volcanology, from Magma to Tephra, Modelling Physical Processes of Explosive Volcanic Eruptions (eds Freundt, A. & Rosi, M.) 247–312 (Elsevier, Amsterdam, 1998)

    Google Scholar

  8. Melosh, H. J. Impact Cratering (Oxford University Press, New York, 1989)

    Google Scholar

  9. Dressler, B. O., Sharpton, V. L., Schwandt, C. S. & Ames, D. Impactites of the Yaxcopoil-1 drilling site, Chicxulub impact structure: Petrography, geochemistry, and depositional environment. Meteorit. Planet. Sci. 39, 857–878 (2004)

    Article ADS CAS Google Scholar

  10. Oberbeck, V. R. The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev. Geophys. Space Phys. 13, 337–362 (1975)

    Article ADS Google Scholar

  11. Schultz, P. H. & Gault, D. E. Atmospheric effects on Martian ejecta emplacements. J. Geophys. Res. 84, 7669–7687 (1979)

    Article ADS Google Scholar

  12. Carr, M. H. et al. Martian impact craters and emplacement of ejecta by surface flow. J. Geophys. Res. 82, 4055–4065 (1977)

    Article ADS Google Scholar

  13. Osinski, G. R., Grieve, R. A. F. & Spray, J. G. The nature of the groundmass of surficial suevite from the Ries impact structure, Germany, and constraints on its origin. Meteorit. Planet. Sci. 39, 1655–1683 (2004)

    Article ADS CAS Google Scholar

  14. Wohletz, K. H. & Sheridan, M. F. Martian rampart crater ejecta: Experiments and analysis of melt-water interaction. Icarus 56, 15–37 (1983)

    Article ADS Google Scholar

  15. Knauth, L. P. & Burt, D. M. Eutectic brines on Mars: Origin and possible relation of young seepage features. Icarus 158, 267–271 (2002)

    Article ADS CAS Google Scholar

  16. McGetchin, T. R., Settle, M. & Head, J. W. Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits. Earth Planet. Sci. Lett. 20, 226–236 (1973)

    Article ADS Google Scholar

  17. Garvin, J. B., Sakimoto, S. E. H., Frawley, J. J. & Schnetzler, C. Global geometric properties of Martian impact craters. Lunar Planet. Sci. 33, abstr. 1255 (2002)

  18. Sheridan, M. F. & Wohletz, K. H. in Microbeam Analysis (ed. Gooley, R.) 35–38 (Univ. San Francisco Press, San Francisco, 1983)

    Google Scholar

  19. Kieffer, S. W. & Simonds, C. H. The role of volatiles and lithology in the impact cratering process. Rev. Geophys. Space Phys. 18, 143–181 (1980)

    Article ADS CAS Google Scholar

  20. Valentine, G. A., Buesch, D. & Fisher, R. V. Basal layered deposits of the Peach Springs Tuff, northwestern Arizona, USA. Bull. Volcanol. 51, 395–414 (1983)

    Article ADS Google Scholar

  21. Mitchell, D. E., Sakimoto, S. E. H. & Garvin, J. B. MOLA topography and morphometry of rampart and pedestal craters, Mars. Lunar Planet. Sci. 33, abstr. 1805 (2002)

  22. Melosh, H. J. Impact ejecta sedimentation processes in the atmosphere and ocean. Meteorit. Planet. Sci. 39, abstr. 67 (2004)

  23. Fisher, R. V. & Walters, A. C. Base-surge bed forms in maar volcanoes. Am. J. Sci. 268, 157–180 (1970)

    Article ADS Google Scholar

  24. Fisher, R. V. & Schmincke, H.-U. Pyroclastic Rocks 249–256 (Springer, New York, 1984)

    Book Google Scholar

  25. Hunt, C. B., Robinson, T. W., Bowles, W. A., Washburn, A. L. & Hunt, C. Hydrologic Basin, Death Valley, California (Professional Paper 494-B, US Geological Survey, Washington DC, 1966)

    Book Google Scholar

  26. Bullock, M. A. & Moore, J. M. Aqueous alteration of Mars-analog rocks under an acidic atmosphere. Geophys. Res. Lett. 31, L14701, doi:10.1029/2004GL019980 (2004)

    Article ADS Google Scholar

  27. Golombek, M. P. et al. Selection of the Mars Exploration Rover landing sites. J. Geophys. Res. 108, 8072, doi:10.1029/2003JE002074 (2003)

    Google Scholar

  28. Baker, V. R. Water and the Martian landscape. Nature 412, 228–236 (2001)

    Article ADS CAS Google Scholar

  29. Jakosky, B. M. & Phillips, R. J. Mars' volatile and climate history. Nature 412, 237–244 (2001)

    Article ADS CAS Google Scholar

  30. Burt, D. M. & Knauth, L. P. Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface. J. Geophys. Res. 108, 8026, doi:10.1029/2002JE001862 (2003)

    Article Google Scholar

  31. Christensen, P. R. & Ruff, S. W. Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water. J. Geophys. Res. 109, EO8003, doi:10.1029/2003JE002233 (2004)

    Article ADS Google Scholar

  32. Hynek, B. M., Arvidson, R. E. & Phillips, R. J. Geologic setting and origin of Terra Meridiani hematite deposit on Mars. J. Geophys. Res. 107, 5088, doi:10.1029/2002JE001891 (2002)

    Article Google Scholar

  33. Boistelle, R. & Astier, J. P. Crystallization mechanisms in solution. J. Cryst. Growth 90, 14–30 (1988)

    Article ADS CAS Google Scholar

  34. Chan, M. A., Breitler, B., Parry, W. T., Ormo, J. & Komatsu, G. A possible terrestrial analogue for haematite concretions on Mars. Nature 429, 731–734 (2004)

    Article ADS CAS Google Scholar

  35. Graup, G. Terrestrial chondrules, glass spherules and accretionary lapilli from the suevite, Ries Crater, Germany. Earth Planet. Sci. Lett. 55, 407–418 (1981)

    Article ADS CAS Google Scholar

  36. Bohor, B. F. & Glass, B. P. Origin and diagenesis of K/T impact spherules—From Haiti to Wyoming and beyond. Meteoritics 30, 182–198 (1995)

    Article ADS CAS Google Scholar

  37. Schumacher, R. & Schmincke, H.-U. Models for the origin of accretionary lapilli. Bull. Volcanol. 56, 626–639 (1995)

    Article ADS Google Scholar

  38. Catling, D. C. & Moore, J. M. The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars. Icarus 165, 277–300 (2003)

    Article ADS CAS Google Scholar

  39. Wohletz, K. H. & McQueen, R. G. Volcanic and stratospheric dust-like particles produced by experimental water-melt interactions. Geology 12, 591–594 (1984)

    Article ADS CAS Google Scholar

  40. Lowe, D. R. et al. Characteristics, origin, and interpretation of Archean impact-produced spherule beds, 3.47–3.22 Ga, in the Barberton Greenstone Belt, South Africa: Keys to the role of large impacts on the evolution of the early Earth. Astrobiology 3, 7–48 (2003)

    Article ADS Google Scholar

  41. Brueckner, J. et al. Hematite on the surface of Meridiani Planum and Gusev Crater. Lunar Planet. Sci. 36, abstr. 1767 (2005)

  42. Klingelhofer, G. et al. Jarosite and hematite at Meridiani Planum from Opportunity's Moessbauer spectrometer. Science 306, 1740–1745 (2004)

    Article ADS CAS Google Scholar

  43. Ditrizac, J. E. & Jambor, J. L. Jarosites and their application in hydrometallurgy. Rev. Mineral. Geochem. 40, 405–452 (2000)

    Article Google Scholar

  44. Burns, R. G. & Fisher, D. S. Evolution of sulfide mineralization on Mars. J. Geophys. Res. 95, 14169–14173 (1990)

    Article ADS Google Scholar

  45. Cas, R. A. F. & Wright, J. V. Volcanic Successions Modern and Ancient (Chapman & Hall, London, 1987)

    Book Google Scholar

  46. McPhie, J., Walker, G. P. L. & Christiansen, R. L. Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea volcano, Hawaii, 1790 A.D. Bull. Volcanol. 52, 334–354 (1990)

    Article ADS Google Scholar

  47. Golombek, M. P. et al. Climate change from the Mars Exploration Rover landing sites: From wet in the Noachian to dry and desicating since the Hesperian. Lunar Planet. Sci. 36, abstr. 1539 (2005)

  48. Gendrin, A. et al. Sulfates in Martian layered terrains: The OMEGA/Mars Express view. Science 307, 1587–1591 (2005)

    Article ADS CAS Google Scholar

  49. Knauth, L. P., Brilli, M. & Klonowski, S. Isotope geochemistry of caliche on basalt. Geochim. Cosmochim. Acta 67, 185–195 (2003)

    Article ADS CAS Google Scholar

  50. Lowe, D. R. & Knauth, L. P. The oldest marine carbonate ooids reinterpreted as volcanic accretionary lapilli, Onverwacht Group, South Africa. J. Sedim. Petrol. 48, 709–722 (1978)

    Google Scholar

Download references

Impact origin of sediments at the Opportunity landing site on Mars (2024)
Top Articles
Latest Posts
Article information

Author: Neely Ledner

Last Updated:

Views: 5552

Rating: 4.1 / 5 (42 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Neely Ledner

Birthday: 1998-06-09

Address: 443 Barrows Terrace, New Jodyberg, CO 57462-5329

Phone: +2433516856029

Job: Central Legal Facilitator

Hobby: Backpacking, Jogging, Magic, Driving, Macrame, Embroidery, Foraging

Introduction: My name is Neely Ledner, I am a bright, determined, beautiful, adventurous, adventurous, spotless, calm person who loves writing and wants to share my knowledge and understanding with you.